
Software design is a process by which the software requirements are translated into a representation 

of software components, interfaces, and data necessary for the implementation phase. The SDD 

shows how the software system will be structured to satisfy the requirements. It is the primary 

reference for code development and, therefore, it must contain all the information required by a 

programmer to write code. You should be aware of this, before writing your reports. 

One template is prepared for both Initial Design Report and Detailed Design Report. In the initial 

design, the overall system architecture and data architecture is defined. In the detailed design report, 

more detailed data structures are defined and algorithms are developed for the defined architecture. 

So you can omit the Detailed Design section in your Initial Design Report. But still you should give the 

design of the subsystems/modules of the system in the Initial Design Report. More detailed and 

complex sub components can be described in the Detailed Design Report.  

In the following template, we didn’t state which diagrams you should give. However, we expect you 

to draw UML diagrams like use case, class, data flow, component, sequence, activity diagrams, etc. 

Draw all types of necessary diagrams which are suitable for your project (for example; if you are 

following an object-oriented approach, draw the class diagrams) and which are enough to represent 

the whole design and architecture of your system. And obviously, these diagrams can be less detailed 

in the Initial Design Report than the Detailed Design Report.  

Software Design Report 

1. Introduction 
Provide an overview of the entire design document. 

1.1. Problem Definition 

Give a detailed problem definition. 

1.2. Purpose  

Describe the purpose of this SDD and its intended audience. 

1.3. Scope 

Describe the scope of this document 

1.4. Overview 

Summarize the contents of this document 

1.5. Definitions, Acronyms and Abbreviations 

 Define any important terms, acronyms, or abbreviations 

1.6. References 

Provide references for any other pertinent documents 

2. System Overview 
Provide a general description of the software system including its functionality and matters 

related to the overall system and its design. Briefly explain the goals, objectives and benefits of 

your project. This will provide the basis for the brief description of your product.  



3. Design Considerations 
Special design issues which need to be addressed or resolved before attempting to devise a 

complete design solution are noted here.  

3.1.  Design Assumptions, Dependencies and Constraints 

Describe any assumptions or dependencies regarding the software and its use (For 

example; related software or hardware, end-user characteristics, etc). Describe any 

global limitations or constraints that have a significant impact on the design of the 

system’s software (For example; hardware or software environment, time 

constraints, security constraints, standards compliance, availability or volatility of 

resources, performance constraints, etc.). 

3.2. Design Goals and Guidelines 

Describe any goals, guidelines, or priorities which dominate or embody the design of 

the system’s software (For example; the KISS principle, emphasis on speed versus 

memory use, Don’t Repeat Yourself principle, portability, or usability, etc.). For each 

such goal or guideline, unless it is implicitly obvious, describe the desirability. 

4. Data Design 

4.1. Data Description 

Explain how the information domain of your system is transformed into data structures. 

(These data structures can be files that are created for temporary use, or data structures 

which are passing among components of the software, or data structures which are available 

to major portions of the architecture, etc..) Describe how the major data or system entities 

are stored, processed and organized. List any databases or data storage items. Describe the 

database(s) created as a part of the applications and provide enough detail to create the 

database. 

4.2. Data Dictionary 

Alphabetically list the system entities or major data along with their types and descriptions. If 

you provided a functional description in Section 5.2, list all the functions and function 

parameters. If you provided an OO description, list the objects and its attributes, methods 

and method parameters. 

5. System Architecture 
A description of the program architecture is presented here. 

5.1. Architectural Design 

Describe the system structure chosen for the application. A pictorial representation, using a 

UML component diagram, of the architecture is presented  (show the major subsystems and 

data repositories and their interconnections). 

Develop a modular system structure and explain the relationships between the modules to 
achieve the complete functionality of the system. This is a high level overview of how 
responsibilities of the system were partitioned and then assigned to subsystems. Identify 
each high level subsystem and the roles or responsibilities assigned to it. Describe how these 
subsystems collaborate with each other in order to achieve the desired functionality. Try not 



to go into too much detail about the individual subsystems. The main purpose is to gain a 
general understanding of how and why the system was decomposed, and how the individual 
parts work together. 
 
If there are any diagrams, models, flowcharts, documented scenarios or use-cases of the 
system behavior and/or structure, they may be included here or if they are too complex 
include them in the Detailed System Design section. Diagrams that describe a particular 
component or subsystem should be included within the particular subsection that describes 
that component or subsystem. 

5.2. Description of Components 

Provide a decomposition of the subsystems in the architectural design. Depending on your 
design, you can give a functional description or an object-oriented description. For a 
functional description, put top level data flow diagram (DFD) and structural  decomposition 
diagrams. For an OO description, put subsystem model, object diagrams, generalization 
hierarchy diagram(s) (if any), aggregation hierarchy diagram(s) (if any), interface 
specifications, and sequence diagrams here. If diagrams are too complex, put them under the 
Detailed Design section. State the responsibilities of the components. State the the 
interacting  components. Explain how each component works; describe the algorithms 
used(the description for components can be organized like below).  
 
You can explain the component in subsections. Proceed to go into as many levels/subsections 
of discussion as needed in order for the reader to gain a high-level understanding of the entire 
system or subsystem (but remember to leave the deep details for the Detailed 
Design section). If you feel the component is a very particular one, you don’t have to explain it 
in this section, and if the component is very detailed then you can explain the details in 
Detailed Design section; in that case state that further details can be found in Detailed Design 
section.Note that; in this section the subsystems or main modules of the main system should 
definetely be described here. According to various circumtances, the sub components or the 
details of these modules can be described in the Detailed Design section. 

5.2.1. Component n 

Describe the software component. (According to the detail level of the component 

you can either explain the expected information about the component in the below 

subsections or in the Detail Design section) 

5.2.1.1. Processing narrative for component n 

Present a processing narrative for component n. It should describe the 

responsibilities of the component. 

5.2.1.2. Component n interface description 

Describe of the input and output interfaces for the component. 

5.2.1.3. Component n processing detail 

Present an algorithmic description for the component. 

5.2.1.4. Dynamic behavior component n 

Prensent a description of the interaction of the classes. Present a sequence 

diagram for each use case the component realizes. 



5.2.2. Component n+1 

Describe the software component. 

5.2.2.1. Processing narrative for component n+1 

Present a processing narrative for component n. It should describe the 

responsibilities of the component. 

5.2.2.2. Component n+1 interface description 

Describe of the input and output interfaces for the component. 

5.2.2.3. Component n+1 processing detail 

Present an algorithmic description for the component. 

5.2.2.4. Dynamic Behavior component n+1 

Prensent a description of the interaction of the classes. Present a sequence 

diagram for each use case the component realizes. 

5.3. Design Rationale 

Provide some sort of rationale for choosing this particular decomposition of the system 
including critical issues and trade/offs that were considered. Discuss other alternative 
designs that were considered, and why they were rejected.  

6. User Interface Design 

6.1. Overview of User Interface 

Describe the functionality of the system from the user’s perspective. Explain how the user 
will be able to use your system to complete all the expected features and the feedback 
information that will be displayed for the user. 

6.2. Screen Images 

Display screenshots showing the interface from the user’s perspective.  

6.3. Screen Objects and Actions 

A discussion of screen objects and actions associated with those objects. 

7. Detailed Design 
It contains the internal details of each design entity/component. These details include attribute 

descriptions for identification, processing and data. It contains all the details that will be needed by 

the programmers for implementation. Short English-like descriptions can be used to describe the 

algorithms utilized. Data structure details should also be given. 

Most components described in the System Architecture section will require a more detailed 

discussion. Other lower-level components and subcomponents may need to be described as well. 

Each subsection of this section will refer to or contain a detailed description of a system software 

component. The discussion provided should cover the following software component attributes: 

Classification: The kind of component, such as a subsystem, module, class, package, function, file, 

etc. .... 

Definition: The specific purpose and semantic meaning of the component. This may need to refer 

back to the requirements specification. 



Responsibilities: The primary responsibilities and/or behavior of this component. What does this 

component accomplish? What roles does it play? What kinds of services does it provide to its clients? 

For some components, this may need to refer back to the requirements specification. 

Constraints: Any relevant assumptions, limitations, or constraints for this component. This should 

include constraints on timing, storage, or component state, and might include rules for interacting 

with this component (encompassing preconditions, postconditions, invariants, other constraints on 

input or output values and local or global values, data formats and data access, synchronization, 

exceptions, etc.) 

Composition: A description of the use and meaning of the subcomponents that are a part of this 

component. 

Uses/Interactions: A description of this components collaborations with other components. What 

other components is this entity used by? What other components does this entity use (this would 

include any side-effects this entity might have on other parts of the system)? This concerns the 

method of interaction as well as the interaction itself. Object-oriented designs should include a 

description of any known or anticipated subclasses, superclasses, and metaclasses. 

Resources: A description of any and all resources that are managed, affected, or needed by this 

entity. Resources are entities external to the design such as memory, processors, printers, databases, 

or a software library. This should include a discussion of any possible race conditions and/or deadlock 

situations, and how they might be resolved. 

Processing: A description of precisely how this components goes about performing the duties 

necessary to fulfill its responsibilities. This should encompass a description of any algorithms used; 

changes of state; relevant time or space complexity; concurrency; methods of creation, initialization, 

and cleanup; and handling of exceptional conditions. 

Interface/Exports: The set of services (resources, data, types, constants, subroutines, and 

exceptions) that are provided by this component. The precise definition or declaration of each such 

element should be present, along with comments or annotations describing the meanings of values, 

parameters, etc. .... For each service element described, include (or provide a reference) in its 

discussion a description of its important software component attributes (Classification, Definition, 

Responsibilities, Constraints, Composition, Uses, Resources, Processing, and Interface). 

Include necessary diagrams like class diagrams, sequence diagrams, etc. 

8. Libraries and Tools 

9. Time Planning (Gannt Chart) 

9.1. Term 1 Gannt Chart 

9.2. Term 2 Gannt Chart 

10. Conclusion 


