course title		semester	$\mathbf{T + U}$	credit	ECTS
Discrete Structures		6	$3+0$	3	3
Prerequisite Courses	None				
Language of the Course	English				
Course Level	Undergraduate				
Course Type	Compulsory				
Course Coordinator					
instructors					
Course Assistants					
The aim of the course	Separate maths of your subjects And these computer engineering of your apps to be examined aims .				
Course Content	This lesson finally student ; 1.Mathematical logic And propositions using given any One problem (conceptual or corporate) abstract by thinking analysis by doing expression can the problem of the solution whether not, if solution if so in what way And How that it is by interpreting to be found . 2. Computer in engineering -most important data from the structures someone the one which... with graph \qquad relating to all your features grasping And your lines some important in algorithms of their use understanding				
Course Learning Outcomes	Separate of mathematics of kobnus And these computer engineering of applications examination.				
weeks	Topics				
what's that	Separate to math Introduction, Proposition				
2 Mathemat	Mathematical Proof Methods				
3 Mathemat	Mathematical Proof Methods				
Cluster theory And forced					
links And Operations, Functions					
links And Operations, Functions					
7 Midterm	Midterm Exam				
$8 \quad$ Groups A	Groups And Half Groups, Cage Structures and Boolean Algebra				
9 Groups A	Groups And Half Groups, Cage Structures and Boolean Algebra				
$10 \times$ Graph Th	Graph Theory				
11th Graph Th	Graph Theory				
12 finite stat	finite stateful machines				
Turing Machines					
Turing Machines					
General Competencies					
Separate maths concepts And their problems consideration by taking models And analysis it does					
resources					
Grimaldi, P. (2004). Discrete and Combinatorial Mathematics, Addison-Wesley. Johnsonbaugh, R. (2001). Discrete Mathematics, Prentice-Hall.					
	Eva	System			

	WITH PROGRAM LEARNING OUTCOMES									
	COURSE LEARNING OUTCOMES RELATIONSHIP TABLE									
	PO1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1	5 5	3	5	5	5	5	3	3	3	3
	5	3	5	3	3	3	3	3	3	3
LO: Learning Outcomes OP: Program Outcomes										
Contri bution Level	1 Very Low	2 Low		3 Medi		4 High			High	

Program Outcomes and Related Course relationship

Lesson	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
Discrete Structures	5	5	3	5	4	4	4	3	3	3	3

