Course title			Code	semester	T+U	credit	ECTS
Probability and Statistics				5	$3+0$	3	4
Prerequisite Courses		None					
Language of the Course		English					
Course Level		Undergraduate					
Type of Course		Optional					
Course Coordinator							
Instructors							
Course Assistants							
The aim of lesson		The aim of the course is to give some basic terms and concepts in probability and statistics and to teach how and why to use statistical methods and probability theory in engineering.					
Course Content		Basic concepts and rules of probability, Random variables: Discrete and continuous, Expected value and variance, covariance, Marginal and Conditional distributions with variables, Popular distributions, Sampling and Descriptive Statistics, Introduction to probability theory, Interval estimation, Hypothesis tests, Simple linear regression and correlation					
Course Learning Outcomes		Students who successfully complete this course; 1. will be able to use the basic principles of descriptive statistics. 2. Will be able to draw conclusions from random variables and calculate simple probabilities. 3. Will be able to control and/or perform statistical surveys. 4. will be able to use general terminology for this course.					
Weeks	Topics						
one	Introduction to probability and statistics, its history, interdisciplinary phenomena, general application areas						
2	Arrangement of Data (simple, frequency and class series, cumulative-proportional frequencies, graphs)						
3	Means (Arithmetic, Mode, Median ...) Random variables (Discrete and continuous random variables, density and distributions)						
4	Probability (Sample space, event, axioms, set theory, counting, permutation, combination) conditional probability, Bayes' theorem) Measures of Variability and Asymmetry Random variables (Expected value, variance, covariance)						
5	Random Variables (Continuous random variables)						
6	Random Variables (Discrete random variables)						
7	Discrete Probability Distributions (Bernoulli, Binomial, Geometric, Hypergeometric, Poisson)						
8	Discrete Probability Distributions (Bernoulli, Binomial, Geometric, Hypergeometric, Poisson)						
9	Estimation theory 1(Forecasting and estimation methods, population mean and rate interval estimation)						
10	Estimation theory 1 (Confidence interval, population mean, population variance, population ratio interval estimation)						
11th	Estimation Theory 2 (Confidence interval of difference between means, confidence interval of difference between ratios)						
12	Hypothesis Tests 1(Error types, critical value, decision making, population mean test, population variance test, population ratio test)						
13	Hypothesis Tests 2 (Test for difference between means, test for difference between ratios)						
14	Simple Regression and Correlation (Parameter estimation, coefficient of determination, regression Model)						

15	Simple Regression and Correlation (Parameter estimation, coefficient of determination, regression Model)
General Competencies	
To be able to teach basic terms and concepts in probability and statistics, statistical methods in engineering and how and why to use probability theory.	
resources	
M. Turanlı \& S. Güriş, "Basic Statistics", Der Publications, 2010, ISBN : 9789753531993	
Evaluation System	
The date accordin	s and hours of the Midterm Exam, Quiz, Final Exam and Evaluations will be announced later, he decision of the Faculty Administrative Board.

	WITH PROGRAM LEARNING OUTCOMES COURSE LEARNING OUTCOMES RELATIONSHIP TABLE										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1	4	3	4	4	5	3	4	4	3	4	5
INCR EASE 2	4	3	4	4	5	3	4	4	3	4	5
INCR EASE 3	4	3	4	4	5	3	4	4	3	4	5
$\begin{array}{\|l\|} \hline \text { INCR } \\ \text { EASE } \\ 4 \\ \hline \end{array}$	4	3	4	4	5	3	4	4	3	4	5
LO: Learning Outcomes OP: Program Outcomes											
Contri bution Level	1 Very		2 Low		3 Med		4 Hi			High	

Relation of Program Outcomes and Related Course

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
Probability and Statistics	4	3	4	4	5	3	4	4	3	4	5

