Course Name	Course Code	semester	T + P	Credit	ECTS
Cryptology			3+0	3	6

Prerequisite Courses	None
----------------------	------

Language of Course	Turkish	
Course class	Technical Elective	
Coordinator of Course	Yrd.Doç.Dr. İbrahim Berkan AYDİLEK	
Instructor	Yrd.Doç.Dr. İbrahim Berkan AYDİLEK	
Course Assistant		
Objective of Course	This derste will introduce some encryption (crypto) systems. The	
	primary objective of this course is to provide cryptology to	
	students who are interested in cryptography.	
Course Learning Output	Students who have successfully completed this course:	
	• They can safeguard data by using their own developed methods	
	or existing cryptology methods.	
	• Understand the importance of information security.	
Course Contents	Introduction and history of cryptology, known cryptology	
	theorems, symmetric and asymmetric crypto systems, crypto	
	analysis, alphabets and words.	

Weeks	Topics
1	Introduction and history of cryptology
2	Basis of cryptology and divisibility
3	Integer representations and simple cryptography methods
4	Known cryptology theorems 1
5	Known cryptology theorems 2
6	Encryption schemes
7	Symmetric and asymmetric crypto systems
8	MIDTERM
9	Cryptographic analysis
10	Alphabets and words
11	Permutation
12	Multiple encryption, Random numbers
13	Matrices and linear maps, Prime number generation
14	decryption
15	FINAL EXAM

General Sufficiency
· ·

It is important that they can use the information they have obtained with algorithm and computer programming and abstract algebra with sufficient knowledge in general mathematics fields.

References

- Cryptography Theory and Practice, Douglas R. Stinson
- A Course in Number Theory and Cryptography, Neal Koblitz

Assessment

Midterm exam: 40%, Final exam: 60%; Project or homework evaluations may be made at the beginning of the semester.