| Course Name | Course <br> Code | Semester | T $+\mathbf{P}$ | Credit | ECTS |
| :--- | :---: | :--- | :--- | :--- | :---: |
| Discrete Structures |  | 3 | $3+0$ | 3 | 4 |


| Prerequisite Courses | None |
| :--- | :--- |


| If the language of Code | Turkish |
| :--- | :--- |
| Course class | Compulsory |
| If the Coordinator of Code |  |
| Instructor |  |
| Assistant Course | It aims to examine discrete mathematical subjects and their computer <br> engineering applications. |
| Objective of Course | The ability to design a system, part, or process with discrete models to meet <br> desired requirements, <br> Ability to apply math, science and engineering knowledge |
| Course Learning Output | Examination of discrete mathematics subjects and their computer engineering <br> applications |


| Weeks |  |
| :---: | :--- |
| 1 | Introduction to Discrete Mathematics, Proposition |
| 2 | Mathematical proof methods |
| 3 | Mathematical proof methods |
| 4 | Set Theory and Algebra |
| 5 | Relationships and Operations, Functions |
| 6 | Relationships and Operations, Functions |
| 7 | MIDTERM |
| 8 | Groups and Semi Groups, Cage Structure and Boolean Algebra |
| 9 | Groups and Semi Groups, Cage Structure and Boolean Algebra |
| 10 | Graph Theory |
| 11 | Graph Theory |
| 12 | Recurrence Relations and Algorithms |
| 13 | Finite State Machines |
| 14 | Turing Machines |
| 15 | FINAL EXAM |


| General Sufficiency |
| :--- |
| Modeling and analyzing discrete mathematics concepts and problems. |
| References |
| $\bullet \quad$ Johnsonbaugh, Richard, Discrete Mathematics, Prentice-Hall, 2001. |
| - Grimaldi, Ralph P. , "Discrete and Combinatorial Mathematics", Addison-Wesley, 2004. |
| Assessment |
| Midterm: $40 \%$ Final exam: $60 \%$ of the project or assignment can be made and announced at the beginning of <br> the semester evaluations. |

