Course Name	Course Code	Semester	T $+\mathbf{P}$	Credit	ECTS
Probability and Statistics		3	$3+0$	3	4

Prerequisite Courses	None

If the language of Code	Turkish
Course class	Compulsory
If the Coordinator of Code	
Instructor	
Assistant Course	To inform the student about probability theory and to apply this information to some events or some random variables that can be anticipated in daily life or scientific researches, to make calculations about them, to teach the expected value (average), standard deviation, etc. of a variable or a data group.
Objective of Course	The ability to learn basic statistical concepts and apply them to random variables
Course Learning Output	Basic concepts, frequency distributions. Histogram and frequency range. Graphical representation of categorical data and applications. Parametric central tendency measures. Parametric distribution measures. Skewness and kurtosis. Basic concepts in probability theory. Addition and multiplication rule, bayes theorem. Probability distribution table, expected value and applications. Probability distribution table, expected value and applications. Basic concepts in discrete and continuous probability distributions. Basic concepts in discrete and continuous probability distributions. Binomial, poisson and hyper geometric distribution and applied studies. Binomial, poisson and hyper geometric distribution and applied studies.

Weeks	
1	Basic concepts, frequency distributions.
2	Histogram and frequency range.
3	Graphical representation of categorical data and applications
4	Parametric central tendency measures
5	Parametric distribution measures
6	Skewness and kurtosis.
7	Basic concepts in probability theory.
8	MIDTERM
9	Addition and multiplication rule, bayes theorem
10	Probability distribution table, expected value and applications
11	Basic concepts in discrete and continuous probability distributions
12	Basic concepts in discrete and continuous probability distributions
13	Binomial, poisson and hypergeometric distribution
14	Applied studies
15	FINAL EXAM

General Sufficiency
Modeling and analyzing the concepts and techniques of probability and statistics.
References
Assessment
Midterm: 40% Final exam: 60% of the project or assignment can be made and announced at the beginning of the semester evaluations.

